Efficient Rule Ensemble Learning using Hierarchical Kernels

نویسندگان

  • Pratik Jawanpuria
  • J. Saketha Nath
  • Ganesh Ramakrishnan
چکیده

This paper addresses the problem of Rule Ensemble Learning (REL), where the goal is simultaneous discovery of a small set of simple rules and their optimal weights that lead to good generalization. Rules are assumed to be conjunctions of basic propositions concerning the values taken by the input features. From the perspectives of interpretability as well as generalization, it is highly desirable to construct rule ensembles with low training error, having rules that are i) simple, i.e., involve few conjunctions and ii) few in number. We propose to explore the (exponentially) large feature space of all possible conjunctions optimally and efficiently by employing the recently introduced Hierarchical Kernel Learning (HKL) framework. The regularizer employed in the HKL formulation can be interpreted as a potential for discouraging selection of rules involving large number of conjunctions – justifying its suitability for constructing rule ensembles. Simulation results show that, in case of many benchmark datasets, the proposed approach improves over state-of-the-art REL algorithms in terms of generalization and indeed learns simple rules. Unfortunately, HKL selects a conjunction only if all its subsets are selected. We propose a novel convex formulation which alleviates this problem and generalizes the HKL framework. The main technical contribution of this paper is an efficient mirrordescent based active set algorithm for solving the new formulation. Empirical evaluations on REL problems illustrate the utility of generalized HKL. Technical Report of the work accepted in ICML 2011. It additionally contains proof of theorems as well as details of experimental results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rule Ensemble Learning Using Hierarchical Kernels in Structured Output Spaces

The goal in Rule Ensemble Learning (REL) is simultaneous discovery of a small set of simple rules and their optimal weights that lead to good generalization. Rules are assumed to be conjunctions of basic propositions concerning the values taken by the input features. It has been shown that rule ensembles for classification can be learnt optimally and efficiently using hierarchical kernel learni...

متن کامل

Generalized hierarchical kernel learning

This paper generalizes the framework of Hierarchical Kernel Learning (HKL) and illustrates its utility in the domain of rule learning. HKL involves Multiple Kernel Learning over a set of given base kernels assumed to be embedded on a directed acyclic graph. This paper proposes a two-fold generalization of HKL: the first is employing a generic `1/`ρ block-norm regularizer (ρ ∈ (1, 2]) that allev...

متن کامل

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

Ensemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search

In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...

متن کامل

On-line Learning of an Unlearnable True Teacher through Mobile Ensemble Teachers

On-line learning of a hierarchical learning model is studied by a method from statistical mechanics. In our model a student of a simple perceptron learns from not a true teacher directly, but ensemble teachers who learn from the true teacher with a perceptron learning rule. Since the true teacher and the ensemble teachers are expressed as non-monotonic perceptron and simple ones, respectively, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011